Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.030$
$w R$ factor $=0.077$
Data-to-parameter ratio $=13.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

2,5-Bis(4-tert-butylphenyl)-3,4-dinitrothiophene

The title compound, $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, is a precursor for the production of low band gap conjugated polymers. The dihedral angles between the thiophene and benzene rings are $31.5(1)$ and $52.2(1)^{\circ}$, and that between the two benzene rings is 35.7 (1) ${ }^{\circ}$.

Comment

The title compound, (I), has been shown to be an excellent precursor for the production of low band gap conjugated polymers and organic light-emitting devices, etc. As indicated in the scheme, standard procedures were used to synthesize (I) in high yield.

The molecular structure is shown in Fig. 1. The double bonds and $\mathrm{C}-\mathrm{C}$ single bond of the substituted thiophene ring are slightly shorter than those of the parent thiophene, while the $\mathrm{S}-\mathrm{C}$ single bond is slightly elongated (Bak et al., 1961). The dihedral angles between the thiophene (S/C2-C5) and benzene rings (C11-C16 and $\mathrm{C} 21-\mathrm{C} 26$) are 52.2 (1) and $31.5(1)^{\circ}$, respectively, and that between the two benzene rings is $35.7(1)^{\circ}$.

Experimental

Compound (I) was prepared via several synthetic steps, such as bromination, nitration and a palladium-catalysed aromatic Stillcoupling reaction (see scheme). The compound is soluble in appropriate organic solvents and was considerably purified by column chromatography (Thomas et al., 2002). The compound was synthesized by the following procedure. A two-necked round-bottomed flask was charged with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(140 \mathrm{mg})$, tributyl(4-tert-butylphenyl)stannane ($9.3 \mathrm{~g}, 22 \mathrm{mmol}$), 2,5-dibromo-3,4-dinitrothiophene ($3.32 \mathrm{~g}, 10 \mathrm{mmol}$) and DMF (20 ml), and the reaction mixture stirred under nitrogen and heated at 343 K for 16 h . After cooling, the mixture was diluted with diethyl ether and the organic phase was washed with water and brine. After drying over anhydrous MgSO_{4} and removing the volatiles, the residue was purified by column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane as eluent, followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH to yield $2.4 \mathrm{~g}(60 \%)$ of (I)

Received 2 August 2005 Accepted 16 August 2005 Online 14 September 2005
as a pale-yellow solid. Crystals suitable for X-ray diffraction were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered with hexane at room temperature.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=438.53$
Monoclinic, $P 2_{b} / c$
$a=14.026$ (3) A
$b=11.120$ (2) \AA
$c=14.491$ (3) \AA
$\beta=99.349(9)^{\circ}$
$V=2230.2(8) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.306 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 7514 \\
& \quad \text { reflections } \\
& \theta=2.9-31.2^{\circ} \\
& \mu=0.18 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.32 \times 0.24 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

Data collection
Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: none
32280 measured reflections
3915 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.077$
$S=1.04$
3915 reflections
281 parameters
H -atom parameters constrained

$$
\begin{aligned}
& 3530 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.025 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-12 \rightarrow 16 \\
& k=-13 \rightarrow 13 \\
& l=-17 \rightarrow 17
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0326 P)^{2}\right. \\
& +1.2009 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.22 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0031 \text { (5) }
\end{aligned}
$$

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work is partially supported by the Institute of Chemistry, Academia Sinica, the Department of Chemistry, National Taiwan Normal University, and Kang-Ning Junior College of Medical Care and Management.

References

Bak, B., Christensen, D., Hansen-Nygaard, L. \& Rastrup-Andersen, J. (1961). J. Mol. Spectrosc. 7, 58-63.

Bruker (2001). SMART and SAINT (Apex2 Version 1.0-27). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Thomas, J. K. R., Lin, J. T., Tao, Y.-T. \& Chuen, C.-H. (2002). Adv. Mater. 14, 822-826.

[^0]: (C) 2005 International Union of Crystallography

